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LElTER TO THE EDITOR 

q-magnetism at roots of unity 
.~ . 
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t D6papartment Physique li~iorique, Universik? de Cienke, CH-1211 Genae 4 
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Rgeived 10 August 1992, in h a 1  form 25 September 1992 

Abstract. We study the thermodynamic properlies of a family of integrable 1D spin cham 
Hamiltonians anociated with quantum groups at mots of unily. Tkese Hamiltonians 
depend for each primitive mot of unily on a parameter s  which^ plays the mle of 
a continuous spin. Tke model exhibib ferromagnetism even though Lhe interaction 
involved is between neareSt neighbours. Ihe latter phenomenon is interpreted as a 
genuine quantum gmup effect with no 'classical' analogue. n e  discusion of mnfomal 
properties is given. 

, 
~~ 

After Heisenberg [l], spin is the key word for understanding the magnetic properties 
of metals. In one spatial dimension we have many exactly solvable models, which can 
be ueated by means of the Bethe ansatz technique 121. These models can be used to 
deepen ow intuition on such non-trivial subjects as magnetism. Quantum groups [3] 
provide the mathematical ground for studying integrable onedimensional spin chains. 
Moreover, the different integrable generalizations of the original S = f Heisenberg 
model are associated in one to one fashion with the different irreps of Uq(SL(2)) 
where the deformation parameter q is related to the anisotropy of the chain. 

Heisenberg's ideas of magnetism can be extended naturally in the context of 
quantum groups, in a sense that the rotational goup SU(2) is replaced by U,(SL(Z)). 
For generic q this replacement is not essential, just because the finitedimensional 
irreps of SU(2) and the ones of its quantum deformation are the same. If we want a' 
typical signal of the effect of defining the spin variables by finitedimensional irreps 
of Uq(SL(2)), 'g-magnetism', we need to work in a very special regime, a q root 
of unity, where we have finite-dimensional irreps of U,(SL(2)) without 'classical' 
( q  = 1) analogue 141. 

In this letter we start a systematic study of the magnetic properties of one- 
dimensional spin chains using non-regular finite-dimensional irreps of U, (SL(2)) at 
roots of unity. The main new phenomena we find, concerning the magnetic properties, 
is ferromagnetism, ie: a disordered ground State with non-vanishing magnetization. 
This kind of behaviour is !mown in systems possessing complex topology of interaction 
[5],~While here the appearance of this phenomena is directly tied with the special irreps 
used to define the Spin variables of the chain. 

The quantum group U,(SL(2)) with q = e, .eN = 1, is generated by the operators 
E ,  F and If = eZs=~. The peculiar thing about E being a root of unity is that E", 
FN' and ICN' are central elements (where N' = N if N is odd and N' = N/2 if 

.. 
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N is even). These central elements, together with the Casimir, label the irreps of 
U,(SL(2)). Regular irreps, which are the qdeformations of the usual integer and 
half-integers spin representations, satisfy E" = FN' = 0 and KN' = fl. Nilpotent 
irreps of U,(SL(2)) are a slight generalization of the regular ones, in the Sense that 
the generator K takes on the generic value &', where s is our 'continuous' spin. 
The dimension of these nilpotent irreps is always N'. 

The 'nilpotent' spin chain Hamiltonian is defined in the standard way as 

where I is an overall coupling constant and L is the total number of sites. The 
quantum R-matrix Raa'(u) intertwining two nilpotent irreps of U,(SL(Z)) is given 
best by its non-vanishmg matrix elements [6] 

1,-1 
n(eukle-j+vz-lz - e-uk €j+lz-rz 1 ~2 
j = U  

where rl, r,, 1 and r1 + r, - ~ l  = 0,1,. . . , N' and 

(16) 

with the following conventions: (a) whenever, in the above products, the upper index 
is less than the lower index the result is one; @) the constraint 1, + 1, = 1 must be 
used to cany out the summation. 

The explicit expression for this q p e  of Hamiltonian (N = 3) can be found in 
[SI. As shown there, for the special case N = 3 and s = 1 the Hamiltonian (1) 
coincides with the Fateev-Zamolodchikov Hamiltonian [7l with the anisotropy bed 
by q = @ I 3 .  The hermiticity conditions on the Hamiltonian H (  S )  are given by 

v S s i n y k s i n ~ ( 2 s - k + 1 )  > 0 k =  1,2, ... , N ' -  1 (2) 
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where q = 27 and v, = f l  is the spin parity. Equation (2) is equivalent to the 
condition Et = v,F for the corresponding nilpotent s-imp. The hermiticity regions 
that follow from (2) (for E = ebiIN) are 

1 1 1 - U ,  s 1 1-v, 
2 Pu 4 Po 
1 3 1-v, s 1 1 1-v, 
2 4Po 4 P, 2 4p0 4 

N even: 

<-<-- -+-  N odd +- 
- - _  +- <-<,+- 4 

(3) 

where pu = N/2. In the following, we shall consider N > 4 (N even) and N > 3 
(N odd). In the aiVial case N = 4, the Hamiltonian (1) is essentially that of the 
XX model in a magnetic field. The case N = 3 [SI requires special treatment which 
will be given elsewhere [9]. 

Notice that, for N even, the middle p i n t  of both spin intervals (vs = fl) 
corresponds to a regular integer or half-integer spin. For N odd only the interval 
of negative parity contains such a point. For all these middle points s,'s the 
corresponding Hamiltonians H ( s , )  are identical to higher spin XXZ models with 
anisotropy y = 2rr/N. It is interesting to observe that 2so + 1 is not a Bkahashi 
number [lo]. Apparently for that reason, Kirillov and Reshetikhin [U] do not consider 
this case in their, otherwise, general analysis. On the other hand, Babujian and 
'Isvelick 1121 have considered one of these points (s = (N  - 2)/4 for N even). 
However, we do not believe that their results are correct concerning this point. 

The Hamiltonian (1) can be diagonalized by means of the standard Bethe ansatz 
[q. The Bethe ansatz equations read, in our case 

sinh %(Aj + 2 s )  sinh:(Aj-Ak+2i)  
sinh :( Aj  - 2is) sinh :(Aj - A, - 2i) 

with the energy eigenvalues given by 

Isin2ys M 

= - ~ s i n h [ ~ ( X ,  k = l  +2is)]sinh[%(Xk -2is)l 

(4) 

where s is our 'generic' spin, subject only to hermiticity requirements (3). 
To solve (4) we will use the string hypothesis (SH) 1131 

Ay = A: + i[n + 1 - 21 + (n/2y)(1- vain)]  (6) 

where 1 = 1,. . . , n and A; is the real-valued centre of the string of length n and 
pariv vm = 3 3 .  It can be proven that the allowed strings are determined by the 
Tikahashi condition [lo] 

vn siny(n - I)sin-yl > 0 1 = 1 , 2 , .  . . , n - 1 (7) 

whenever the hermiticity condition (2) holds true. Strictly speaking, SH is legitimate 
only if the number of BA roots is much smaller than the number of sites. However, 
it has been shown [14] that the SH can be safely used for the non-zero magnetic field 
or temperature. 

1 
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Using the Qkahashi zone' terminology, we have for the allowed strings ( n j , v j )  

0-zone n .  I = j U n j = + l  l < j < v - 1  
1-zone n, = 1 U, = -1 j = v  N even: 

N odd { 1-zone ( n u =  1 U" = -1 j = v  
n , + l = v f l  v y + , = + l  j = v + l  

>zone %+2 = v v,+2 = +1 j = Y + 2 

where Y = $N for N even and Y = $( N - 1) for N odd. 
In the thermodynamic limit equations (4) become 

6j = ( - l ) ~ j i ( p j + P j h ) + C T j k * p k  
k 

(9) 

where pj (p jh)  is the density of j-strings (j-holes) and (-l)rj is the sign of Gj(X) 
and '*' stands for convolution. The Fourier transforms of the functions which appear 
in (9) are given by 

where ((. . .)) is the Dedekind function. 

obtain 
Following Yang and Yang [15] we minimize the free energy F = E - TS to 

In the T = 0 limit we obtain results for the ground state and the s p e c t "  of 
excitations as given in table 1. 

We observe that classification of the strings, given in table 1, is independent of the 
value of the spin s, as long as it belongs to the hermiticity regions (3). A comparison 
of the spectrum given above with that of [U] shows that they are quite different. 
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lhbk 1. Results for ground state and spec" of acitations in the T = 0 limit. ?he 
entries refer to the label j of the strings (n,, v j ) .  

N I Ground state strings Positive energy strings Zen, energy strings 

even > O  U - 1  U lhe Lest 
wen < O  U the rest none 

odd > O  u + 2  u , u + l  
odd 1 0  v , u + l  the rest 

the Lest 
none 

Interestingly enough, there is only one kind of string tilling the Dirac sea (except for 
the case of N odd and I < 0). This will be important when we discuss the conformal 
properties of ow models. 

It is appropriate to point out that zero energy strings, contributing neither to 
energy nor momentum, play a vital role in the S-matrix calculations and in labelling 
the degenerate states. In fact, they provide quantum numbers describing spin-1/2 and 
parafermionic degrees of freedom. The origin of this phenomenon can be traced back 
to the symmetries of the Hamiltonian (1) which appear only in the hlinite volume 
limit Finally, we comment that energies of physical excitations show remarkable 
dependence on s (our generic spin), as illustrated in table 2 

Wle 2. Energies of holes m distribution of ground state strings. 

The T + 00 limit of equations (11) provides a justification of the SH. In fact, 
we get limT-- F / T L  = -In N', which implies that the total number of states is 
correctly given by ( N')L.  

Next we move on to compute entropy S 

Making use of equations (U), we obtain in the low temperature limit 

- _  L N even: 
I < O  
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where vs, vf and v; are speeds of sound 

and L ( z )  is the diloganthmic Roger function [16]. Notice that for N odd and I < 0 
we have two different speeds of sound. For the remaining cases there is only one 
speed of sound so that the underlying c ~ r  has a central extension e given by 

From equation (13) we get 

r < o  c =  1 for N even 

where 

i ( N - 2 )  N even 

; ( N  - 1) N odd. 
%ti = 

When N is odd and I < 0 there are two different strings filling the ground state 
and two different speeds of sound. This fact indicates that rotational invariance is 
broken which, in turn, implies that we do not have a full conformal invariance. This 
situation has already been &cussed in the literature [lq, where a broken c ~ r  (in the 
sense given above) can be viewed as a sum of two independent m. In our case, we 
have not been able to identify any of the broken pieces with reasonable c~r. 

Finally, we present our results for the magnetization of the ground state at T = 0 
which is defined as 

The results are collected in table 3. 

lhbk 3. Resulls for magnetization of ground state at T = 0. 

N I M 
even > O  M = $ N [ p - ( $ N - l ) $ ( 3 - u . ) ]  
even < o M = $N(+(I - U,)) 
odd 
ald < 0 M =  - N [ s +  1 - ( $ ( N +  l ) ) f (3-  v.)] 

> 0 M = N [ s  - ( ; ( N  - 1)):(3- v.)] 
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From table 3, we see that for generic s (subject to hehiticity condition (3)) the 
ground state exhibits ferromagnetic behaviour. More precisely, when spin s takes 
on values dierent  from integer or half-integer then magnetization is non-null. This 
non-vanishing M is produced intonally by representation h e y .  

q being a root of unity made it possible to depart from 
regular representations and this, in tum, led to the interesting phenomenon of 
ferromagnetism for a system governed by a local (nearest-neighbour interaction) 
Hamiltonian. Finally, we comment that contrary to the case where non-zero M is 
produced by external magnetic field, we. have infinite Fermi band for the ground state 
strings [cg,.slale(ko) = 01 and all our excitations are massless. Thus, all conformal 
degrees of freedom are preserved and central charge does not depend on s, as can 
be seen from (15). 

In future publications we hope to report on our study of magnetic properties of 
the model as well as on the further analysis of mnformal properties and to present 
our study of scattering matrices along with quantum numbers of low-lying excitations. 
The details of the results presented here will be given elsewhere [9]. 

We are grateful to L Nirenberg for the prompt typing of this manuscript. 

’Ib summarize: 

Note added in prooj After this letter was submitted for publication it was brought to our attention by the 
referee that femmagnetism also appears in the mntext of the Per!+Schultz model, as discussed in [18]. 
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